TB036 (Rev2) - Measuring Motor Revs. Per Inch or mm's/rev

For imperial machine configurations the number of motor revolutions required to move 1 " must be calculated.

1. For metric machine configurations the number of mm's travelled during one revolution of the motor must be calculated.
2. Do a rough check of the current motor/ballscrew ratios using a tape measure. In MDI, type g92 x0yOz0, and press cycle start to set the current XYZ position to 0 .
3. Lay a tape measure on the table with the one end at the spindle.
4. In MDI issue a command of G1 X1 F10 (if metric, use X25 F250), press cycle start. Note: If the motors do not move smoothly, press Estop and move the axis manually from to 1 " $(25 \mathrm{~mm}$)
5. Measure the distance the axis actually moved and set your motor revs/inch (or motor mm 's/rev if in metric) as follows: Press F1 -Setup \rightarrow F3 Config, password $=137$, Press enter \rightarrow F2 Mach \rightarrow F2 Motor

Imperial - How to compute motor revs/inch:
Commanded distance (DRO) / Distance moved (measured) = multiplier Multiplier * Current revs/inch = corrected revs/inch

Ex: Commanded Distance (DRO) $=1.0000$ " $=2$ (multiplier) * current revs/in Distance moved $($ measured $)=.5 "$
(multiplier) 2 * (current revs/inch) 5.0000 $=10 \leftarrow$ New motor revs/inch

Metric - How to compute motor mm's/rev:

Distance moved (measured) / Commanded Distance (DRO) = multiplier
Multiplier * Current mm's/rev = corrected mm's/revs
Ex: Distance moved $=.125 \mathrm{~mm}=.5$ (multiplier) * current mm's/rev Commanded Distance $=25 \mathrm{~mm}$
(multiplier) . 5 * (current mm's/rev) $5.0000=2.5 \leftarrow$ New motor mm's/rev

Axis	Label		Motor Parameters						Stall detection	
		Motor	Encoder	Lash Comp.	Limit		Home		Dir	Screw
		revs/in	counts/rev	(Inches)	-	+	-	+	Rev	Comp
1	X	5.00000	8000	0.00000	1	2	1	2	N	N
2	Y	5.00000	8000	0.00000	3	4	3	4	N	N
3	Z	5.00000	8000	0.00000	5	6	5	6	N	N
4	N	5.00000	8000	0.00000	0	0	0	0	N	N
5	N	5.00000	8000	0.00000	0	0	0	0	N	N
6 s	N	0.00000	0	0.00000	0	0	0	0	N	N
7	N	0.00000	0	0.00000	0	0	0	0	N	N
8	N	0.00000	0	0.00000	0	0	0	0	N	N

NOTE: After changing revs/in or mm's/rev, part 0's must be reset (step 1)
5. Fine tuning:

Making sure they are parallel/perpendicular with the table, butt a place a gauge block or anything else that can be measured accurately up against a 123 block - a 6" (150mm) parallel works nicely as shown below:

1. Jog in slowly from 1 direction to take up lash
2. Zero indicator and axes
3. MDI Z to .5" (12mm) to clear Spindle
4. MDI command X 6 " (150mm)
5. Read indicator to measure distance traveled
6. Compute and enter new motor revs/inch or $\mathrm{mm} / \mathrm{rev}$

Imperial - How to compute motor revs/inch:

Commanded distance / Distance moved = multiplier
Multiplier * Current revs/inch = corrected revs/inch
Ex: Commanded Distance $=\underline{6.0000 "}=\sim .999417$ (multiplier) * current revs/inch
Distance moved $=6.0035{ }^{\prime \prime}$
(multiplier) . 999417 * (current revs/inch) $5.0000=4.997085 \leftarrow$ New motor revs/inch
Metric - How to compute motor mm's/rev:
Distance moved (measured) / Commanded distance (DRO) = multiplier
Multiplier * Current mm's/revs = corrected mm's/rev
Ex: Distance moved(meas.) = $150.021 \mathrm{~mm}=1.00014$ (multiplier) * current mm's/rev Commanded Distance(DRO) $=150 \mathrm{~mm}$
(multiplier) 1.00014 * (current mm's/rev) $5.0000=5.0007 \leftarrow$ New motor mm's/rev

Perform this procedure 1 or 2 more times (being sure to reset your part zero after any change in the ratios). You should be able to accurately position to within a . 0001 (.00254mm).

NOTE: After changing revs/in or mm's/rev, part 0's must be reset

